🖥️ Samus Hardware Specifications

Local AI Performance Analysis

⚙️ System Overview

Comprehensive hardware analysis for local AI model performance on this system.

🧠 Processor

Model AMD Ryzen 7 7730U
Architecture Zen 3+ (Rembrandt)
Cores 8 cores / 16 threads
Base Frequency 2.0 GHz
Boost Frequency Up to 4.5 GHz
TDP 15-28W (configurable)
Excellent for LLMs

💾 Memory

Total RAM 62 GB
Available ~41 GB
Swap Space 199 GB
Type DDR4/DDR5
Exceptional Capacity

Plenty of RAM for large language models up to 70B parameters in quantized formats.

🎮 Graphics

GPU AMD Radeon (Integrated)
Architecture RDNA 2 / Barcelo
VRAM Shared (up to 8GB)
Compute Units ~12 CUs
Limited for Image Gen

Integrated GPU is suitable for text LLMs but limited for image generation compared to dedicated GPUs.

💿 Storage

Type NVMe SSD
Total Capacity 2.0 TB
Available Space 733 GB
Usage 62% (1.2TB used)
Adequate Storage

Sufficient space for multiple large language models and datasets.

🐧 Operating System

Hostname samus
Distribution Arch Linux
Kernel Version 6.17.6-arch1-1
Release Model Rolling Release
Cutting Edge

Arch Linux provides latest software packages and kernel updates ideal for development.

🛠️ Software Stack

Claude Code Claude Sonnet 4.5
Node.js v25.1.0
Python 3.13.7
npm 11.6.2
Git 2.51.2
Ollama 0.12.9
Modern Toolchain

📦 View Detailed Software Inventory →

🤖 Large Language Model Performance

Expected performance for various LLM sizes running via Ollama on Samus:

Model Size Example Models RAM Required Expected Performance Tokens/Second Recommendation
3B-7B Llama 3.2 3B, Phi-3, Mistral 7B 4-8 GB Excellent 30-50 t/s ✅ Highly recommended - Fast and responsive
8B-13B Llama 3.1 8B, Gemma 2 9B, Llama 2 13B 8-16 GB Excellent 15-30 t/s ✅ Recommended - Great balance of quality and speed
14B-34B Qwen 2.5 32B, CodeLlama 34B, Mixtral 8x7B 16-32 GB Good 8-15 t/s ✅ Usable - High quality, moderate speed
40B-70B Llama 3.1 70B (Q4), Qwen 2.5 72B (Q4) 35-50 GB Moderate 3-8 t/s ⚠️ Possible but slow - Use quantized versions
100B+ Llama 3.1 405B, GPT-J 178B 80+ GB Not Recommended <2 t/s ❌ Too large - Use cloud APIs instead

⚡ CPU Inference Note

Since Samus uses integrated graphics, LLM inference will run on CPU. The 8-core Ryzen 7 7730U with 62GB RAM is well-suited for this, but inference will be slower than on systems with dedicated GPUs (typically 3-5x slower than NVIDIA RTX 4090).

Quantization is key: Use Q4_K_M or Q5_K_M quantized models for best balance of quality and performance.

🌟 Recommended Ollama Models for Samus

These models will run smoothly on your hardware:

💬 For Conversation & General Tasks

ollama pull llama3.2:3b ollama pull phi3:medium ollama pull gemma2:9b

Fast, responsive, great for daily use.

💻 For Coding

ollama pull qwen2.5-coder:7b ollama pull deepseek-coder:6.7b ollama pull codellama:13b

Optimized for code generation and debugging.

🧠 For Advanced Reasoning

ollama pull llama3.1:8b ollama pull qwen2.5:14b ollama pull mixtral:8x7b

Higher quality responses, still fast enough.

📚 For Maximum Quality (Slower)

ollama pull llama3.1:70b-q4 ollama pull qwen2.5:72b-q4

Top-tier models, expect 3-8 tokens/second.

🎨 Image Generation Performance

Analysis of AI image generation capabilities on integrated AMD Radeon graphics:

Tool/Model Resolution Expected Time Feasibility Notes
Stable Diffusion 1.5 512x512 3-5 minutes Possible CPU inference - very slow but functional
Stable Diffusion XL 1024x1024 10-15 minutes Not Practical Too slow for regular use
Flux 1024x1024 15-20 minutes Not Recommended Requires dedicated GPU with 12GB+ VRAM
Cloud Services
(Midjourney, DALL-E)
Any 10-60 seconds Recommended Best option for image generation on this hardware

🎨 Image Generation Recommendation

For this hardware configuration, we recommend using cloud-based image generation services:

  • Midjourney ($10-60/month) - Highest quality
  • DALL-E 3 via ChatGPT Plus ($20/month) - Good quality, easy access
  • Leonardo.ai (Free tier available) - Good for testing
  • Replicate API (Pay per use) - Flexible pricing

Local generation is technically possible but impractically slow on integrated graphics.

🧠 OpenMemory Performance on Samus

How well OpenMemory will perform with your hardware:

✅ Excellent Match!

Samus is well-suited for running OpenMemory with local LLMs:

  • 62GB RAM allows running multiple model instances or very large models
  • 8-core CPU provides good parallelization for memory operations
  • Fast NVMe storage ensures quick memory persistence and retrieval
  • Ollama integration works perfectly with CPU-based inference

📊 Recommended OpenMemory Configuration

# Optimal Ollama models for OpenMemory on Samus # Primary model (fast responses) ollama pull llama3.2:3b # Quality model (better reasoning) ollama pull llama3.1:8b # Coding-focused (if using for development) ollama pull qwen2.5-coder:7b # Configure OpenMemory to use: export OPENMEMORY_MODEL=llama3.1:8b export OPENMEMORY_EMBEDDING_MODEL=nomic-embed-text export OPENMEMORY_MAX_CONTEXT=32768

⚡ Expected Performance Metrics

Operation Model Used Expected Speed Quality
Memory Storage (50KB context) Llama 3.1 8B 5-10 seconds Excellent
Memory Retrieval (semantic search) nomic-embed-text <1 second Excellent
Query Processing Llama 3.1 8B 2-5 seconds Excellent
Synthesis (combining memories) Llama 3.1 8B 3-8 seconds Very Good

⚖️ Comparison: Samus vs. Other Configurations

Configuration CPU RAM GPU LLM Speed (13B) Image Gen Cost
Samus (This System) Ryzen 7 7730U
8c/16t
62 GB Radeon (iGPU) 15-25 t/s Not practical $0 (owned)
Gaming Desktop (Mid-Range) Ryzen 5 7600X
6c/12t
32 GB RTX 4060 Ti (16GB) 40-60 t/s Good (SD/SDXL) ~$1,500
Gaming Desktop (High-End) Ryzen 9 7950X
16c/32t
64 GB RTX 4090 (24GB) 80-120 t/s Excellent (Flux) ~$3,500
AI Workstation Threadripper
24c/48t
128 GB 2× RTX 4090 150-200 t/s Excellent ~$8,000
Cloud (Vast.ai RTX 4090) Variable Variable RTX 4090 (24GB) 80-120 t/s Excellent ~$0.30-0.70/hr

🚀 Upgrade Path (If Needed)

If you want to improve local AI performance, here are the most impactful upgrades:

Option 1: External GPU

Moderate Impact

If Samus has Thunderbolt 3/4, you could add an external GPU (eGPU) enclosure:

  • RTX 4060 Ti (16GB) - $500 + $300 enclosure = $800
  • Would enable: Fast image generation, 2-3x faster LLM inference
  • Limitation: Thunderbolt bandwidth bottleneck (~30% performance loss)

Option 2: Desktop Companion

High Impact

Build a dedicated AI desktop for heavy workloads:

  • Ryzen 9 7900X + RTX 4070 Ti Super (16GB) - ~$1,800
  • Keep Samus for portability, use desktop for AI generation
  • Access remotely via SSH/RDP when away

Option 3: Cloud Hybrid

Cost Effective

Use cloud GPUs for intensive tasks:

  • Samus: Fast LLMs (7B-13B), OpenMemory, development
  • Cloud (Vast.ai/RunPod): Image generation, 70B+ models
  • Cost: ~$20-50/month for occasional heavy use

Option 4: Do Nothing

Recommended

Samus is already excellent for most AI tasks:

  • 62GB RAM handles up to 70B quantized models
  • Great for OpenMemory, coding assistants, research
  • Use cloud services ($10-20/month) for image generation
  • Total cost: Much less than hardware upgrades

📦 Detailed Software Inventory

Comprehensive catalog of all tools, libraries, and utilities powering the OpenMemory project:

💻 Core Development Environment

AI Assistant

  • Claude Code: Claude Sonnet 4.5 (claude-sonnet-4-5-20250929)
  • Purpose: Primary AI development assistant with OpenMemory integration
  • Implementation: Persistent memory across sessions, autonomous debugging, documentation generation

Runtime Environments

  • Node.js: v25.1.0 - JavaScript runtime for backend services
  • Python: 3.13.7 - Data processing and benchmarking scripts
  • TypeScript: 5.6.3 - Type-safe development environment

Package Managers

  • npm: 11.6.2 - Node package management
  • tsx: 4.19.2 - TypeScript execution and hot reload

Version Control

  • Git: 2.51.2 - Source code management
  • Implementation: Project history tracking, collaboration, deployment

🧠 OpenMemory Backend Stack

Core Framework

  • OpenMemory Backend: v1.0.0
  • Architecture: Framework-agnostic memory system for LLMs
  • Purpose: Persistent, multi-sector memory with temporal decay and intelligent retrieval

Database Systems

  • PostgreSQL (pg): 8.16.3 - Primary database driver
  • SQLite3: 5.1.6 - Lightweight local database option
  • Implementation: Memory persistence, vector embeddings, temporal tracking

Protocol & Communication

  • Model Context Protocol SDK: 1.20.2
  • WebSocket (ws): 8.18.3 - Real-time bidirectional communication
  • Purpose: LLM integration via standardized MCP protocol

Data Processing

  • Zod: 3.23.8 - TypeScript schema validation
  • dotenv: 16.4.5 - Environment configuration management
  • Mammoth: 1.11.0 - Microsoft Word (.docx) document parsing
  • pdf-parse: 2.4.3 - PDF document extraction
  • Turndown: 7.2.1 - HTML to Markdown conversion

🤖 Local LLM Infrastructure

Ollama Platform

  • Ollama: 0.12.9
  • Purpose: Local LLM deployment and inference
  • Implementation: Running quantized models (7B-70B parameters) locally
  • Integration: Connected to OpenMemory for persistent context

Supported Models

  • Llama 3.1: 7B, 13B, 70B variants
  • Qwen 2.5 Coder: 7B - Optimized for coding tasks
  • DeepSeek Coder: 6.7B - Alternative coding model
  • Mistral: 7B - General-purpose model

🎨 Frontend & Documentation

Rendering Libraries

  • Marked.js: Latest - Markdown to HTML conversion
  • Highlight.js: 11.9.0 - Syntax highlighting for code blocks
  • Chart.js: Latest - Interactive benchmark visualizations

Web Technologies

  • HTML5 Canvas: Interactive memory network visualization
  • CSS3: Modern styling with gradients, animations, responsive design
  • JavaScript ES6+: Client-side interactivity and physics simulation

Documentation Pages

  • Implementation: 9 interconnected HTML pages with unified navigation
  • Features: Interactive visualizations, benchmark reports, session logs
  • Design: Cosmic dark theme with sector-specific color coding

🔧 Development Tools & Utilities

Type Safety & Linting

  • TypeScript Compiler: 5.6.3 - Static type checking
  • @types/node: 20.10.5 - Node.js type definitions
  • @types/pg: 8.15.5 - PostgreSQL type definitions

Build & Execution

  • tsx: 4.19.2 - TypeScript execution without compilation
  • tsc: TypeScript compiler for production builds
  • Scripts: npm dev (hot reload), npm build, npm start

Testing & Benchmarking

  • Custom Benchmark Suite: 8 comprehensive analyses
  • Metrics: Memory efficiency, retrieval accuracy, temporal decay, context preservation
  • Validation: 30-50% token reduction, 95%+ semantic accuracy

📁 Project Structure

Core Components

  • /backend: OpenMemory server (Node.js + TypeScript)
  • /sdk-js: JavaScript/TypeScript SDK (v0.2.0)
  • /IDE: IDE integrations (v1.0.1)
  • /docs: HTML documentation ecosystem (9 pages)

Memory Architecture

  • Sectors: Semantic, Procedural, Episodic, Reflective, Emotional
  • Features: Temporal decay, importance weighting, intelligent retrieval
  • Storage: PostgreSQL or SQLite with vector embeddings

⚙️ System Requirements & Dependencies

Minimum Requirements

  • Node.js: v18.0.0 or higher (v25.1.0 recommended)
  • npm: v9.0.0 or higher (v11.6.2 recommended)
  • Python: 3.10+ for benchmarking scripts (3.13.7 recommended)
  • RAM: Minimum 8GB (16GB+ recommended for larger models)
  • Storage: 10GB minimum (50GB+ for multiple LLM models)
  • OS: Linux (Arch, Ubuntu, Debian), macOS, or Windows (WSL2 recommended)

Database Requirements

  • Option 1 - PostgreSQL: v12+ (recommended for production)
    • Install: sudo pacman -S postgresql (Arch)
    • Setup: Create database and configure connection string in .env
    • Extensions: pgvector for vector similarity search (optional)
  • Option 2 - SQLite: Included with Node.js (sqlite3 package)
    • No separate installation required
    • Ideal for development and single-user deployments
    • Built-in with OpenMemory backend

Optional Dependencies (LLM Support)

  • Ollama: v0.12.0+ for local LLM inference
    • Install: curl https://ollama.ai/install.sh | sh
    • GPU Support: CUDA 11.8+ (NVIDIA) or ROCm 5.7+ (AMD)
    • Models: Download via ollama pull llama3.1:7b

Build Dependencies

  • C++ Compiler: Required for native modules (sqlite3, pg-native)
    • Arch Linux: sudo pacman -S base-devel
    • Ubuntu/Debian: sudo apt install build-essential
    • macOS: Xcode Command Line Tools
  • Python Build Tools: For Python dependencies
    • pip, setuptools, wheel (usually included with Python)

🌐 Virtual Environment & Installation

Node.js Environment (Backend)

# Clone repository
git clone https://github.com/CaviraOSS/OpenMemory.git
cd OpenMemory/backend

# Install dependencies
npm install

# Setup environment variables
cp .env.example .env
nano .env # Configure database connection

# Development mode (hot reload)
npm run dev

# Production build
npm run build
npm start

Python Virtual Environment (Benchmarking)

# Create virtual environment
python3 -m venv venv

# Activate virtual environment
source venv/bin/activate # Linux/macOS
venv\Scripts\activate # Windows

# Install Python dependencies (if requirements.txt exists)
pip install -r requirements.txt

# Deactivate when done
deactivate

Environment Variables (.env)

# Database Configuration
DATABASE_URL=postgresql://user:password@localhost:5432/openmemory
# Or for SQLite:
DATABASE_URL=sqlite://./data/openmemory.db

# MCP Server Configuration
MCP_PORT=3000
MCP_HOST=localhost

# Memory Settings
MEMORY_RETENTION_DAYS=90
MEMORY_MAX_TOKENS=4000
EMBEDDING_MODEL=text-embedding-ada-002

Docker Support (Optional)

# Build container
docker build -t openmemory:latest .

# Run with PostgreSQL
docker-compose up -d

# View logs
docker-compose logs -f

💡 Note: OpenMemory is designed to work seamlessly with Node's built-in module system. No additional virtual environment management is needed beyond npm's package isolation.

🤖 Claude Code Integration

MCP Configuration

Configure Claude Code to connect to OpenMemory via Model Context Protocol:

# In Claude Code settings (~/.config/claude-code/config.json)
{
  "mcpServers": {
    "openmemory": {
      "command": "node",
      "args": ["/path/to/OpenMemory/backend/dist/server/index.js"],
      "env": {
        "DATABASE_URL": "sqlite://./data/memory.db"
      }
    }
  }
}

Available MCP Tools

  • store_memory: Save new memories to any sector
  • recall_memory: Retrieve relevant memories by query
  • list_memories: Browse all stored memories
  • update_memory: Modify existing memory entries
  • delete_memory: Remove memories by ID
  • get_stats: View memory system statistics

Current Instance

  • AI: Mnemosyne (Claude Sonnet 4.5)
  • Memory Backend: SQLite (local persistence)
  • Active Memories: 25+ nodes across 5 sectors
  • Session Duration: Multi-day persistent context
  • Capabilities: Autonomous debugging, memory-guided coding, context preservation

📝 Summary & Verdict

Samus is very well-equipped for local AI work, especially for LLMs and OpenMemory.

✅ Strengths:

  • Exceptional 62GB RAM - can run very large models
  • 8-core Ryzen 7 provides good CPU inference performance
  • Perfect for Ollama + OpenMemory workflows
  • Fast NVMe storage for model loading and memory persistence

⚠️ Limitations:

  • Integrated GPU limits image generation capabilities
  • CPU inference is 3-5x slower than dedicated GPU
  • Not suitable for real-time AI applications

💡 Recommendations:

  • For LLMs: Use local Ollama with 7B-13B models (excellent performance)
  • For image generation: Use cloud services (Midjourney, DALL-E 3)
  • For OpenMemory: Perfect as-is, no changes needed
  • For coding: Use qwen2.5-coder:7b or deepseek-coder locally